Conformal Invariance of the 3D Self-Avoiding Walk
نویسندگان
چکیده
منابع مشابه
Conformal invariance of the 3D self-avoiding walk.
We show that if the three-dimensional self-avoiding walk (SAW) is conformally invariant, then one can compute the hitting densities for the SAW in a half-space and in a sphere. We test these predictions by Monte Carlo simulations and find excellent agreement, thus providing evidence that the SAW is conformally invariant in three dimensions.
متن کاملConformal Invariance and Stochastic Loewner Evolution Predictions for the 2D Self-Avoiding Walk - Monte Carlo Tests
Simulations of the self-avoiding walk (SAW) are performed in a half-plane and a cutplane (the complex plane with the positive real axis removed) using the pivot algorithm. We test the conjecture of Lawler, Schramm and Werner that the scaling limit of the two-dimensional SAW is given by Schramm’s Stochastic Loewner Evolution (SLE). The agreement is found to be excellent. The simulations also tes...
متن کاملPeculiar scaling of self-avoiding walk contacts.
The nearest neighbor contacts between the two halves of an N-site lattice self-avoiding walk offer an unusual example of scaling random geometry: for N-->infinity they are strictly finite in number but their radius of gyration R(c) is power law distributed proportional to R(-tau)(c), where tau>1 is a novel exponent characterizing universal behavior. A continuum of diverging length scales is ass...
متن کاملO ct 2 00 2 Conformal Invariance in Percolation , Self - Avoiding Walks , and Related Problems ∗
Over the years, problems like percolation and self-avoiding walks have provided important testing grounds for our understanding of the nature of the critical state. I describe some very recent ideas, as well as some older ones, which cast light both on these problems themselves and on the quantum field theories to which they correspond. These ideas come from conformal field theory, Coulomb gas ...
متن کامل2 7 Se p 20 02 Conformal Invariance in Percolation , Self - Avoiding Walks , and Related Problems ∗
Over the years, problems like percolation and self-avoiding walks have provided important testing grounds for our understanding of the nature of the critical state. I describe some very recent ideas, as well as some older ones, which cast light both on these problems themselves and on the quantum field theories to which they correspond. These ideas come from conformal field theory, Coulomb gas ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2013
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.111.165703